GEOMETRY

SHAPES AND SOLIDS

SQUARE

$$P = 4s$$

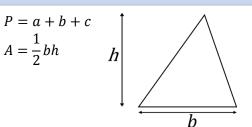
$$A = s^{2}$$

$$S$$

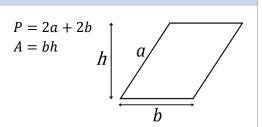
RECTANGLE

$$P = 2a + 2b$$

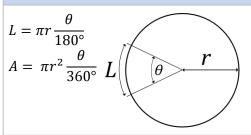
$$A = ab$$

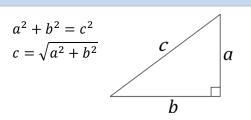

$$D$$

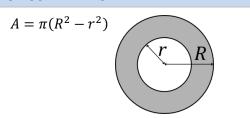
CIRCLE


$$P = 2\pi r$$

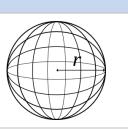
$$A = \pi r^2$$


TRIANGLE

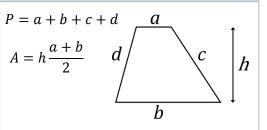

PARALLELOGRAM


CIRCULAR SECTOR

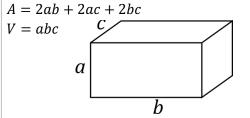
PYTHAGOREAN THEOREM

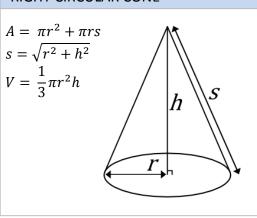


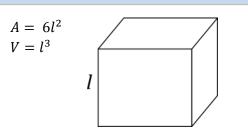
CIRCULAR RING

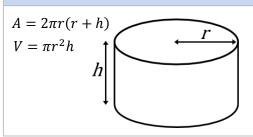


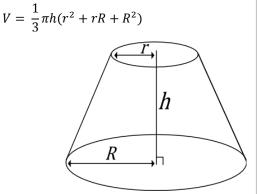
SPHERE




TRAPEZOID


RECTANGULAR BOX


RIGHT CIRCULAR CONE


CUBE

CYLINDER

FRUSTUM OF A CONE

EEWeb.com

Electrical Engineering Community

- Latest News
- Engineering Community
- Online Toolbox
- Technical Discussions
- Professional Networking
- Personal Profiles and Resumes
- Community Blogs and Projects
- Find Jobs and Events

their faces, vertices and edges. Face - a flat or curved surface Edge - line where 2 faces meet Vertex - point where 3 or more edges meet

All 3d shapes can be described in terms of

where s is the length of one side

Volume = $\ell \times w \times h$ Surface area = 28h + 28w + 2wh where ℓ = length, w = width, h = height

CUBOID (RECTANGULAR PRISM)

CUBE

Volume $= s^3$

Surface area = 6s2

PYRAMIDS

3D SHAPES

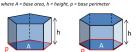
Volume of a general pyramid = 1/3 Ah where A = base area and h = height

REGULAR TETRAHEDRON

Volume = $b^3/6\sqrt{2}$ Surface area = $\sqrt{3}b^2$

SQUARE PYRAMID

Volume = $\frac{1}{3}$ s²h Surface area = $s^2 + 2sh$



PRISMS

Volume of any prism = Ah

Surface area of a closed prism = 2A + (h x p)

TRIANGULAR PRISM

Volume = A & or % bh & Surface area = bh + 2ℓs + ℓb

SPHERES Volume = 4/3 nr³

Surface area = 4 nr2

RIGHT CYLINDER

Volume = $\pi r^2 h$

Surface area = 2 nr (r + h)

RIGHT CIRCULAR CONE Volume = $\frac{1}{3} \pi r^2 h$

Surface area = nr (r + s)

